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Interference Alignment and Degrees of Freedom of
the K-User Interference Channel
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Abstract—For the fully connected K user wireless interference
channel where the channel coefficients are time-varying and are
drawn from a continuous distribution, the sum capacity is char-
acterized as C(SNR) = K

2
log(SNR) + o(log(SNR)). Thus, the K

user time-varying interference channel almost surely has K=2 de-
grees of freedom. Achievability is based on the idea of interference
alignment. Examples are also provided of fully connected K user
interference channels with constant (not time-varying) coefficients
where the capacity is exactly achieved by interference alignment at
all SNR values.

Index Terms—Capacity, degrees of freedom, interference
alignment, interference channel, multiple-input–multiple-output
(MIMO), multiplexing.

I. INTRODUCTION

I NFORMATION theorists have pursued capacity charac-
terizations of interference channels for over three decades

[1]–[16]. These efforts have produced an extensive array of
interesting results that shed light on various aspects of the
problem. Recently, a special case of the Han–Kobayashi
scheme [3] is shown in [10] to achieve the capacity of the
two-user interference channel within one bit. Reference [10]
also provides a generalized degrees of freedom characterization
that identifies different operational regimes for the two-user
interference channel. For optimal wireless network design,
the natural question is whether the insights from the two-user
interference channel generalize to interference channel sce-
narios with more than two users. Unfortunately, for more than
two users, even degrees of freedom characterizations are not
known. At a coarse level, some of the interference management
approaches used in practice and their information theoretic
basis may be summarized as follows:

• Decode: If interference is strong, then the interfering
signal can be decoded along with the desired signal—the
tradeoff is that while decoding the interference may im-
prove the rates for the desired signal, the decodability
of the interfering signals limits the other users’ rates.

Manuscript received July 16, 2007; revised March 19, 2008. This work was
supported in part by the National Science Foundation under CAREER Grant
0546860 and by DARPA under ITMANET Grant UTA06-793. The material
in this paper was presented in part at the 45th Annual Allerton Conference on
Communications, Control, and Computing, Monticello, IL, September 2007.

The authors are with the Center of Pervasive Communications and Computing
(CPCC), Department of Electrical Engineering and Computer Science, Univer-
sity of California Irvine, Irvine, CA 92697 USA (e-mail: vcadambe@uci.edu;
syed@uci.edu).

Communicated by P. Viswanath, Associate Editor for Communications.
Color version of Figure 2 in this paper is available online at http://ieeexplore.

ieee.org.
Digital Object Identifier 10.1109/TIT.2008.926344

While less common in practice due to the complexity of
multi-user detection, this approach is supported by the
capacity results on the “very strong interference” [1],
and “strong interference” [3], [4] scenarios in the context
of the two-user interference channel. The extension of
“strong interference” results to more than two users is not
straightforward in general.

• Treat as Noise: If interference is weak, then the inter-
fering signal is treated as noise and single user encoding/
decoding suffices. This approach has been used in prac-
tice for a long time, e.g., for frequency-reuse in cellular
systems. However, information theoretic validation for this
approach has only recently been obtained through sev-
eral concurrent works [10], [13], [14], [17]. While treating
weak interference as noise may be natural from an engi-
neering standpoint, it is somewhat surprising from an in-
formation theoretic perspective that introducing structure
into the interference signals is not useful in this regime.
This result has been established for more than two users as
well.

• Orthogonalize: If the strength of interference is compa-
rable to the desired signal, then interference is avoided
by orthogonalizing the channel access. This is the basis
for time (frequency) division medium access schemes that
avoid interference between coexisting wireless systems
by dividing spectrum in a cake-cutting fashion. Informa-
tion-theoretic validation for this approach comes from
the capacity pre-log (degrees of freedom) characteriza-
tions.1 Considering only single-antenna nodes, the single
user AWGN channel capacity in the absence of interfer-
ence may be expressed as SNR SNR so
that in the absence of interference the Gaussian channel
has degree of freedom. The sum capacity (per user)
of the two-user interference channel is known to be

SNR SNR so that each user gets only
half the degrees of freedom. It is conjectured in [18] that
the sum capacity (per user) for the user interference
channel is SNR SNR . Orthogonal access
schemes can be used to divide the degree of freedom
among the users such that each user gets a fraction and
the sum of these fractions is equal to . We refer to this
approach as the “cake-cutting” approach.

In this paper, we explore the regime identified with the “or-
thogonalize” approach above, where all desired and interfering
signals are of comparable strength. We show that, for a broad
class of wireless networks, even when there are more than two

1If the capacity can be expressed asC(SNR) = d log(SNR)+o(log(SNR))
then we say the channel has d degrees of freedom (also known as the capacity
pre-log or the multiplexing gain).
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interfering users, the sum capacity (per user) is SNR
SNR —i.e., everyone gets half the cake. The key to this

result is an achievable scheme called interference alignment that
is especially relevant to the interference channel with more than
two users. We begin with the system model.

II. SYSTEM MODEL

Consider the user interference channel, comprised of
transmitters and receivers. Each node is equipped with only
one antenna (multiple antenna nodes are considered later in this
paper). The channel output at the th receiver over the th time
slot is described as follows:

where, is the user index, is the
time slot index, is the output signal of the th receiver,

is the input signal of the th transmitter, is the
channel fade coefficient from transmitter to receiver over the
th time-slot and is the additive white Gaussian noise

(AWGN) term at the th receiver. We assume all noise terms
are independent identically distributed (i.i.d.) zero-mean com-
plex Gaussian with unit variance. To avoid degenerate channel
conditions (e.g., all channel coefficients are equal or channel
coefficients are equal to zero or infinity) we assume that the
channel coefficient values are drawn i.i.d. from a continuous
distribution and the absolute value of all the channel coeffi-
cients is bounded between a nonzero minimum value and a fi-
nite maximum value, .
We assume that channel knowledge is causal and globally avail-
able, i.e., at time slot each node knows all channel coefficients

.
Remark: For the purpose of this work there is no funda-

mental distinction between time and frequency dimensions.
The channel-use index in the model described above could
equivalently be used to describe time-slots, frequency slots or
a time-frequency tuple if coding is performed in both time and
frequency. The varying nature of the channel coefficients from
one channel-use to another is, however, an important assump-
tion. We also define the term “constant” channel, as the case
where all channel coeffcients are fixed .

We assume that transmitters have independent
messages intended for receivers ,
respectively. The total power across all transmitters is assumed
to be equal to . We indicate the size of the message set by

. For codewords spanning channel uses, the rates
are achievable if the probability of error for

all messages can be simultaneously made arbitrarily small by
choosing an appropriately large . The capacity region of
the user interference channel is the set of all achievable rate
tuples .

A. Degrees of Freedom

Similar to the degrees of freedom region definition for the
multiple-input–multiple-output (MIMO) channel in [19] we

define the degrees of freedom region for the user interfer-
ence channel as follows:

(1)

III. OVERVIEW OF MAIN RESULTS

The main insight offered in this paper is how the idea of in-
terference alignment can be applied to the user interference
channel to restrict all interference at every receiver to approxi-
mately half of the received signal space, leaving the other half
interference-free for the desired signal. We present a toy ex-
ample to illustrate this key concept.

A. Interference Alignment—Toy Example

Consider the constant -user interference channel defined by

(2)

where at the th channel use, are the th re-
ceiver’s output symbol and zero mean, unit variance, complex
circularly symmetric additive white Gaussian noise (respec-
tively) and is the th transmitter’s input symbol. All
direct channel coefficients are equal to while all cross channel
(carrying interference) coefficients are equal to . The
channel coefficients are fixed for all channel uses. All symbols
are complex and all transmitted signals are subject to a power
constraint , so that . In the absence of interference,
any user can achieve a capacity and the optimal
input distribution is circularly symmetric complex Gaussian.

With all users present the optimal (sum-capacity
achieving) scheme is as follows. Each transmitter sacri-
fices half the signal space and only sends a real Gaussian signal
with power . Each receiver discards the imaginary part of
the received signal that contains all the interference and is able
to decode the desired signal free from interference at a rate

, where the factor of
shows up in the denominator because only the “real” part of
the additive noise (which has power ) is relevant. Thus, the
sum rate with interference alignment is .

Interestingly, the sum capacity of this channel is also
, which means that for this symmetric channel

interference alignment is capacity optimal at any SNR. The
converse argument is as follows. Consider any two users, say
users 1 and 2 and eliminate all other users. This cannot hurt the
users being considered. Consider any reliable coding scheme
for this two user interference channel. Because the coding
scheme is reliable by assumption, user 1 can successfully
decode his message and subtract it out from the received signal.
Now he can add back a phase-shifted version of his signal to
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reconstruct a new received signal that is statistically equivalent
to the received signal of receiver 2. This implies that receiver
1 can decode both messages. Thus, the sum rate achieved
by users 1 and 2 cannot be more than the sum-capacity of
the two-user multiple access channel to receiver 1. But this
multiple-access channel (MAC) has sum capacity .
Similarly, considering any two users we find that their sum rate
is bounded above by . Adding all these bounds
together, we find that the outerbound on the sum-rate of all
users in the interference channel is . Since this
is achievable with interference alignment, it is also the capacity
of this -user interference channel. This is true at any SNR

value. One particularly interesting aspect of this example is
that while the capacity achieving scheme uses Gaussian inputs,
they are not circularly symmetric Gaussians. This is remarkable
because for Gaussian point to point (MIMO), multiple access,
broadcast channels with complex channel coefficients, the
inputs (even if they are correlated and have different powers)
are individually (element-wise) circularly symmetric Gaussian.

B. Other Examples

Interference alignment examples similar to the ones pre-
sented above can also be constructed in other dimensions
such as space (beamforming across multiple antennas),
time (either through propagation delays or through coding
across time-varying channels), frequency (either through
doppler-shifts or by coding across multiple-carriers with fre-
quency selective coefficients) and codes (through lattice or
multilevel codes that align interference within signal levels).
Appendix I provides a simple example of interference align-
ment when each channel has a delay associated with it. As
another example, consider two parallel interference channels
(for example over two orthogonal carriers). On the first car-
rier suppose all channel coefficients are equal to , while on
the second carrier suppose all desired channels are equal to
one and the interfering channel coefficients are equal to .
Then it is easily seen that by spreading the signal over the
two carriers with the spreading code all interference is
aligned. This example is presented in [20] to establish the result
that parallel interference channels are inseparable, i.e., joint
coding across parallel channels is necessary to achieve ca-
pacity (unlike Gaussian multiple access and broadcast channels
where separate coding with optimal power allocation across
carriers suffices to achieve capacity). Interference alignment is
achieved through lattice codes in the context of many-to-one
and one-to-many interference channels in [21] and for certain
fully connected interference channels in [22], which also draws
an interesting analogy between the propagtion delay example
provided in Appendix I and the alignment of signal levels
through multilevel codes. Quite simply, a multiplication of the
transmitted signal with the channel coefficient (say ) leads
to a decimal-point shift of the ary representation (i.e., the
base- representation) of the transmitted signal value which is
similar to a propagation delay in time.

The enabling premise for interference alignment in all the
preceding examples is the relativity of alignment—i.e., the
alignment of signal vector spaces is relative to the observer
(the receiver). Two transmitters may appear to be accessing

the channel simultaneously to one receiver while they appear
to be orthogonal to another receiver. Since each receiver has a
different view, there exist scenarios where each receiver, from
its own perspective, appears to be privileged relative to others.
The goal of interference alignment is to create such scenarios
in a wireless network. Specifically, interference alignment
refers to a construction of signals in such a manner that they
cast overlapping shadows at the receivers where they constitute
interference while they remain distinguishable at the receivers
where they are desired.

The idea of interference alignment evolved out of the degrees
of freedom investigations on the two-user MIMO channel
[19], [23], [24] and the compound broadcast channel [25]. The
two-user channel is a communication system with two trans-
mitters, two receivers, and four independent messages, one from
each transmitter to each receiver. Taking advantage of the MAC
and the broadcast channel (BC) components contained within
the channel, Maddah-Ali, Motahari, and Khandani proposed
an elegant coding scheme (the MMK scheme) in [23] for the
two-user MIMO channel. The MMK scheme naturally com-
bines successive decoding and dirty paper coding, the optimal
schemes for the constituent MAC and BC. Interestingly, the
MMK scheme achieves degrees of freedom on the two-
user channel when all nodes are equipped with antennas.
The key to this result is the implicit interference alignment that
is facilitated by the iterative optimization of transmit precoding
and receive combining vectors. The first explicit interference
alignment scheme is presented in [24] where it is shown that
dirty paper coding and successive decoding are not required
to achieve the maximum degrees of freedom on the two-user
MIMO channel. The achievability of degrees of freedom
and the converse are established in [19]. Interference alignment
is used in [19], [26] to obtain innerbounds on the degrees of
freedom region of the MIMO channel. Interference align-
ment is also a key ingredient of the degrees of freedom char-
acterization of the compound broadcast channel in [25].

C. Degrees of Freedom of the User Interference Channel

In this paper we establish that the user time-varying in-
terference channel defined in Section II has degrees of
freedom. Equivalently, at high SNR, every user is (simultane-
ously and almost surely) able to achieve reliable communica-
tion at rates approaching one half of the capacity that he could
achieve in the absence of all interference. An interesting impli-
cation of this result is that time-varying interference networks
are not fundamentally interference-limited.

The result has the same flavor as the toy examples presented
earlier in this section. In both cases the conclusion is that
everyone gets half the cake. While the toy examples represent
contrived scenarios where the channel parameters are carefully
selected to facilitate interference alignment, the degrees of
freedom result is for channels whose coefficients are random,
i.e., selected by nature. There is a penalty involved with random
channel coefficients, but the penalty is SNR , i.e., it
becomes a negligible fraction of the users’ rates at high SNR.
Indeed, we expect that the rate penalty will increase with the
number of users, so that it will take higher and higher SNR to
approach half of each user’s capacity as the number of users
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Fig. 1. Interference alignment on the three-user interference channel to achieve 4=3 degrees of freedom.

increases. The degrees of freedom perspective is too coarse to
capture this penalty and therefore does not reveal this compe-
tition among users. In this sense, the picture presented by the
degrees of freedom result is optimistic.

The degrees of freedom for the constant interference channel
(with the exception of certain MIMO scenarios) remains an
open problem for more than two users. The interference align-
ment schemes used in this paper are based on beamforming
over multiple symbol extensions of the time-varying channel.
These schemes do not exactly achieve the outerbound on the
degrees of freedom for a finite symbol extension. Instead,
by using longer symbol extensions we are able to approach
arbitrarily close to the outerbound. Intuitively, this can be
understood as follows. In order to achieve exactly degrees
of freedom (per user) over a finite symbol extension, every
receiver must be able to partition its observed signal space into
two subspaces of equal size, one of which is meant for the
desired signals and the other is the “waste basket” for all the
interference terms. Moreover, the vector spaces corresponding
to the interference contributed by all undesired transmitters
must exactly align at every receiver within the waste basket
which has the same size as each of the interference signals. It
turns out this problem is overconstrained and does not admit
a solution. We circumvent this problem by allowing some
overflow space (a few extra symbols) for interference terms
that do not align perfectly. Fortunately, we find that the size of
the overflow space becomes a negligible fraction of the total
number of dimensions as we increase the size of the signal
space. Thus, for any it is possible to align interference
to the extent that the achieved degrees of freedom are within
an fraction of the outerbound. The tradeoff is that the smaller

the value of , the larger the number of symbols (time slots)
needed to recover a fraction of the outerbound value per
symbol. As an example, consider the user interference
channel. We are able to achieve degrees of freedom over
a symbol extension of the channel so that the degrees
of freedom per symbol equal , for any positive integer

. By choosing large enough we can approach arbitrarily
close to the outerbound of degrees of freedom. The case of

is shown in Fig. 1. The figure illustrates how
degrees of freedom are achieved over a symbol
extension of the channel with single antenna users, so
that a total of degrees of freedom are achieved per channel
use. User 1 achieves degrees of freedom by transmitting two
independently coded streams along the beamforming vectors

while users 2 and 3 achieve one degree of freedom
by sending their independently encoded data streams along the
beamforming vectors , respectively. Let us pick
be the vector of all ones.

The remaining beamforming vectors are chosen as follows.
• At receiver 1, the interference from transmitters 2 and 3 are

perfectly aligned

• At receiver 2, the interference from transmitter 3 aligns
itself along one of the dimensions of the two-dimensional
interference signal from transmitter 1
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• Similarly, at receiver 3, the interference from transmitter
2 aligns itself along one of the dimensions of interference
from transmitter 1

Remark: Note that noncausal channel knowledge is not re-
quired because of the diagonal nature of the channel matrices

resulting from symbol extensions over parallel channels.

Remark: Also note that in order to deliver a capacity that
grows as , i.e., in order to carry one degree of freedom, it
is not necessary for a beamforming vector to be orthogonal to
the interference. It suffices if the beamforming vector is linearly
independent of the basis vectors of the interference signal space.

Remark: Finally, note that the construction of beamforming
vectors for interference alignment is not unique. For example,

could be any random vector instead of the all ones vector.
Moreover, at receiver 2, the interference from transmitter 3,

does not necessarily have to align with one of the
beams received from transmitter 1. It only needs to lie within
the two-dimensional (2-D) space spanned by the two beams re-
ceived from transmitter 1.

Similarly, at receiver 3, we only need

Since in this work our interest is only in the degrees of freedom
we do not consider the optimization of beamforming vectors
over these possibilities.

IV. DEGREES OF FREEDOM FOR THE USER INTERFERENCE

CHANNEL

The following theorem presents the main result of this section.

Theorem 1: The number of degrees of freedom per user for
the user interference channel (defined in Section II) is

(3)

A. Converse for Theorem 1

The converse argument for the theorem is a simple extension
of the outerbounds presented in [18], [27] which are themselves
based on Carleial’s outerbound [2]. However, because we as-
sume that the channel coefficients are time-varying our model
is different from these works which focus on constant channel
coefficients. For the sake of completeness we derive the con-
verse in this section.

The converse follows from the following lemma which pro-
vides an outerbound on the degrees of freedom region of the
user interference channel.

Lemma 1:

(4)

To obtain the converse result of Theorem 1, simply add all the
inequalities from Lemma 1. This gives us

(5)

(6)

The Proof of Lemma 1 (for the general case where all nodes
have antennas) is provided in Appendix II. A sketch of the
proof is provided here. Without loss of generality, let us focus
on case . In order to obtain the corresponding
outerbound, consider any reliable coding scheme for the user
interference channel. Now, suppose we eliminate messages

, i.e., we use a pre-determined sequence of
bits known to all the transmitters and receivers in place of
these messages so that . Then all
receivers can subtract out the signals received from transmit-
ters . This is equivalent to a two user interference
channel, where receiver 1 and 2 receive signals only from
transmitters 1, 2, and decode messages and , respec-
tively. Next we argue that this two user interference channel
can only have one degree of freedom. This argument proceeds
as follows.

Let us provide message to receiver 2. Because receiver
2 has complete knowledge of all channel coefficients and the
message , we can eliminate the channel between transmitter
1 and receiver 2. Because the coding scheme is a reliable coding
scheme by assumption, receiver 1 is also capable (with high
probability) of decoding , its desired message. In that case,
we can also eliminate the channel from transmitter 1 to receiver
1. Then we end up with each receiver seeing only transmitter
2’s signal with noise. For each channel use, we make sure that
receiver 1 has the better channel by reducing noise variance if
necessary. Thus, the signal at receiver 2 is a degraded version
of the signal at receiver 1. We argue that if receiver 2 can de-
code its message , receiver 1 must also be able to decode

with a high probability. Finally, the closing argument is that
since receiver 1 (with possibly reduced noise) is able to decode
both messages for any reliable coding scheme, the rates

must lie in the capacity region of the multiple ac-
cess channel from transmitters 1, 2 to receiver 1 with reduced
noise at the receiver. But since this receiver has only one an-
tenna and reducing the noise variance (by a finite amount that
depends only on the channel coefficients and not on the SNR

) does not affect the degrees of freedom, the total degrees of
freedom cannot be more than . This gives us the desired outer-
bound of (4) for the case .

B. Achievability Proof for Theorem 1 With

The achievability proof is presented next. Since the proof is
rather involved, we present first the constructive proof for

. The proof for general is then provided in Appendix III.
We show that lies in

the degrees of freedom region . Since the degrees of
freedom region is closed, this automatically implies that
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This result, in conjunction with the converse argument proves
the theorem.

To show that lies in , we construct an
interference alignment scheme using only time slots. We
collectively denote the symbols transmitted over
time slots as a supersymbol. We call this the symbol
extension of the channel. With the extended channel, the signal
vector at the th user’s receiver can be expressed as

where is a column vector representing the
symbol extension of the transmitted symbol , i.e.

...

Similarly and represent symbol extensions of
the and , respectively. is a diagonal

matrix representing the symbol extension of
the channel as shown in the equation at the bottom of the page.

We show that is achievable on
this extended channel implying that lies in
the degrees of freedom region of the original channel.

In the extended channel, message is encoded at
transmitter 1 into independent streams

sent along vectors so that is

where is a column vector and is a
-dimensional matrix. Similarly and

are each encoded into independent streams by transmitters 2
and 3 as and , respectively.

The received signal at the th receiver can then be written as

In this achievable scheme, receiver eliminates interference
by zero-forcing all to decode . At receiver 1,
desired streams are decoded after zero-forcing the interference
to achieve degrees of freedom. To obtain interfer-
ence free dimensions from a -dimensional received signal
vector , the dimension of the interference should be not
more than . This can be ensured by perfectly aligning the in-
terference from transmitters 2 and 3 as follows:

(7)

At the same time, receiver 2 zero-forces the interference from
and . To extract interference-free dimensions from

a -dimensional vector, the dimension of the interference
has to be not more than . For instance

This can be achieved by choosing and so that

(8)

where , means that the set of column vectors of matrix
is a subset of the set of column vectors of matrix . Similarly,
to decode at receiver 3, we wish to choose and so
that

(9)

Thus, we wish to pick vectors , and so that (7),
(8), (9) are satisfied. Note that the channel matrices have a
full rank of almost surely. Since multiplying by a full rank
matrix (or its inverse) does not affect the conditions represented
by (7), (8), and (9), they can be equivalently expressed as

(10)

(11)

(12)

where

(13)

(14)

(15)

(16)

Note that is a matrix. and are
matrices. Since all channel matrices are invertible, we

can choose and so that they satisfy (10)–(12) and then

...
. . .

...
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use (13)–(16) to find , and . are picked as
follows. Let be the column vector

...

We now choose and as

It can be easily verified that , and satisfy the three equa-
tions (10)–(12). Therefore, and satisfy the inter-
ference alignment equations in (7), (8) and (9).

Now, consider the received signal vectors at Receiver 1. The
desired signal arrives along the vectors while
the interference arrives along the vectors and the
vectors . As enforced by (7) the interference vectors
are perfectly aligned. Therefore, in order to prove that there are

interference free dimensions it suffices to show that the
columns of the square, -dimensional matrix

(17)

are linearly independent almost surely. Multiplying by the full
rank matrix and substituting the values of ,
equivalently, we need to show that almost surely (see (18) at
the bottom of the page) has linearly independent column vec-
tors where is a diagonal matrix. In other
words, we need to show with probability 1. The
proof is obtained by contradiction. If possible, let be singular
with nonzero probability. For instance, . Fur-
ther, let the diagonal entries of be and the
diagonal entries of be . Then the equation
shown at the bottom of the page is true with nonzero proba-
bility.Let indicate the cofactor of the th row and th column
of . Expanding the determinant along the first row, we get

None of “cofactor” terms in the above expansion depend
on and . If all values other than are given, then the
above is a linear equation in . Now, implies one of
the following two events:

1) is a root of the linear equation.
2) All the coefficients forming the linear equation in are

equal to , so that the singularity condition is trivially sat-
isfied for all values of .

Since is a random variable drawn from a continuous distri-
bution, the probability of taking a value which is equal to the
root of this linear equation is zero. Therefore, the second event
happens with probability greater than , and we can write

Consider the equation

Since the terms do not depend on , the above equation is
a polynomial of degree in . Again, as before, there are two
possibilities. The first possibility is that takes a value equal to
one of the roots of the above equation. Since is drawn from
a continuous distribution, the probability of this event happening
is zero. The second possibility is that all the coefficients of the
above polynomial are zero with nonzero probability and we can
write

We have now shown that if the determinant of the
matrix is equal to with nonzero probability, then the

determinant of following: matrix (obtained by strip-
ping off the first row and last column of is equal to with
nonzero probability as shown in the equation at the bottom of
the following page with probability greater than . Repeating the
above argument and eliminating the first row and last column at
each stage, we get

...
...

...
. . .

...

with probability greater than . But this is a Vandermonde ma-
trix and its determinant

is equal to only if for some . Since are
drawn independently from a continuous distribution, they are
all distinct almost surely. This implies that .

(18)

...
...

...
. . .

...
...

...
. . .

...
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Thus, the vectors carrying the desired signal at receiver
1 are linearly independent of the interference vectors which
allows the receiver to zero force interference and obtain
interference free dimensions, and therefore degrees of
freedom for its message.

At receiver 2 the desired signal arrives along the vectors
while the interference arrives along the vectors
and the vectors . As enforced by (8) the

interference vectors are perfectly aligned within the
interference vectors . Therefore, in order to prove that
there are interference free dimensions at receiver 2 it suffices
to show that the columns of the square,

-dimensional matrix

(19)

are linearly independent almost surely. This proof is quite sim-
ilar to the proof presented above for receiver 1 and is therefore
omitted to avoid repetition. Using the same arguments we can
show that both receivers 2 and 3 are able to zero force the
interference vectors and obtain interference free dimensions
for their respective desired signals so that they each achieve
degrees of freedom.

Thus we established the achievability of
for any . This scheme, along with the converse automatically
imply that

C. The Degrees of Freedom Region for the 3 User Interference
Channel

Theorem 2: The degrees of freedom region of the three-user
interference channel is characterized as follows:

(20)

Proof: The converse argument is identical to the converse
argument for Theorem 1 and is therefore omitted. We show

Fig. 2. Degrees of Freedom Region for the three-user interference channel.

achievability as follows. Let be the degrees of freedom re-
gion of the three-user interference channel. We need to prove
that . We show that which along with the con-
verse proves the stated result.

The points can be
verified to lie in through trivial achievable schemes. Also,
Theorem 1 implies that lies in (Note that
this is the only point which achieves a total of degrees of
freedom and satisfies the inequalities in (20).)f Consider any
point as defined by the statement of the the-
orem. The point can then be shown to lie in a convex
region whose corner points are , J, K, L, and N. For in-
stance, can be expressed as a convex combination
of the end points (see Fig. 2)

where the constants are defined as shown in the table at the
bottom of the page.

It is easily verified that the values of are nonnegative for
all and that they add up to one. Thus, all points
in are convex combinations of achievable points

...
...

...
. . .

...
...

...
. . .

...
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and . Since convex combinations are achievable by time
sharing between the end points, this implies that . To-
gether with the converse, we have and the proof is
complete.

The assumption of time varying channels is intriguing
because it is not clear if degrees of freedom will be
achieved with constant channels. Therefore, the validity of the
Host–Madsen–Nosratinia conjecture [18] remains unknown.
On the one hand the number of degrees of freedom is a dis-
continuous measure as evident from the point to point channel
where it represents the rank of the channel matrix. Therefore
the constant coefficient case may be of limited significance.
On the other hand, the constant channel case may shed light
on novel interference alignment schemes such as interference
alignment in the signal “level” dimension as demonstrated for
certain special cases in [22] and interference alignment through
lattice codes as demonstrated for the one-sided interference
channel in [21].

Next we discuss the relationship between degrees of freedom
and an capacity characterization.

D. The Capacity Approximation

The degrees of freedom provide a capacity approximation
that is accurate within , i.e.

(21)

In general, a capacity approximation within is more accu-
rate than an approximation within . However, it turns
out that in many cases the two are directly related. For example,
it is well known that for the full rank MIMO channel with
input antennas and output antennas, transmit power and
i.i.d. zero mean unit variance additive white Gaussian noise
(AWGN) at each receiver, the capacity may be expressed
as

(22)

A similar relationship between the degrees of freedom and the
capacity characterization also holds for the MIMO mul-

tiple access channel, the MIMO broadcast channel, and the two-
user MIMO interference channel. For the MIMO, MAC, and
BC, the outerbound on sum capacity obtained from full cooper-
ation among the distributed nodes is . The in-
nerbound obtained from zero forcing is also
so that we can write . For the
two user MIMO interference channel and the two-user MIMO

channel the outerbound is obtained following an extension
of Carleial’s outerbound [2] which results in a MIMO MAC
channel. The innerbound is obtained from zero forcing. Since
both of these bounds are within of we can
similarly write . However, consider
the user interference channel with single antennas at each
node. In this case, we have only shown

(23)

To claim that capacity of the user interference channel is
within we need to show an innerbound

of . Since our achievable schemes
are based on interference alignment and zero forcing, the nat-
ural question to ask is whether an interference alignment and
zero forcing based scheme can achieve exactly degrees of
freedom. The following explanation uses the case to
suggest that the answer is negative.

Consider an achievable scheme that uses a symbol ex-
tension of the channel. Now, consider a point that
can be achieved over this extended channel using interference
alignment and zero-forcing alone. If possible, let the total de-
grees of freedom over this extended channel be . For in-
stance, . It can be argued along the
same lines as the converse part of Theorem 1 that is
achievable in the two-user interference channel for

. Therefore

It can be easily seen that the only point that satis-
fies the above inequalities and achieves a total of degrees
of freedom is . Therefore, any scheme that achieves
a total of degrees of freedom over the extended channel
achieves the point .

We assume that the messages are encoded along
independent streams similar to the coding scheme in the proof
of Theorem 1, i.e.

Now, at receiver 1, to decode an -dimensional signal using
zero-forcing, the dimension of the interference has to be at most

. For instance

(24)

Note that since has linearly independent
column vectors and is full rank with probability ,

. Similarly, the dimension of the
interference from transmitter 3 is also equal to . Therefore,
the two vector spaces on the left-hand side of (24) must have
full intersection, i.e.,

span span (25)

span span At receiver (26)

span span At receiver (27)

where span represents the space spanned by the column vec-
tors of matrix The above equations imply that

span

span

span span

where .
The above equation implies that there exists at least one
eigenvector of in . Note that since all channel
matrices are diagonal, the set of eigenvectors of all channel
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matrices, their inverses and their products are all identical to
the set of column vectors of the identity matrix. For instance,
vectors of the form . Therefore is an
eigenvector for all channel matrices. Since lies in span ,
(25)–(27) imply that,

span

span span

Therefore, at receiver 1, the desired signal is not lin-
early independent with the interference . Therefore,
receiver 1 cannot decode completely by merely zero-forcing
the interference signal. Evidently, interference alignment in the
manner described above cannot achieve exactly degrees of
freedom on the 3 user interference channel with a single antenna
at all nodes.

We explore this interesting aspect of the three-user interfer-
ence channel further in the context of multiple antenna nodes.
Our goal is to find out if exactly degrees of freedom
may be achieved with antennas at each node. As shown by
the following theorem, indeed we can achieve exactly
degrees of freedom so that the capacity characterization
for is indeed related to the degrees of freedom as

.

V. DEGREES OF FREEDOM FOR THE INTERFERENCE CHANNEL

WITH MULTIPLE ANTENNA NODES

A. The Three-User Interference Channel With
Antennas at Each Node and Constant Channel Coefficients

The three-user MIMO interference channel is interesting be-
cause in this case we show that we can achieve exactly de-
grees of freedom with constant channel matrices, i.e., time-vari-
ations are not required. This gives us a lowerbound on sum ca-
pacity of . Since the outerbound on
sum capacity is also we have an
approximation to the capacity of the three-user MIMO interfer-
ence channel with antennas at all nodes.

Theorem 3: In a three-user interference channel with
antennas at each transmitter and each receiver and constant co-
efficients, the sum capacity may be characterized (almost
surely) as

(28)

The outerbound follows directly from [27] which shows that the
two-user interference channel with antennas at each node and
constant channel coefficients has only degrees of freedom. In
the three-user case, we eliminate one message at a time to obtain
inequalities . Adding
up all three inequalities we obtain the converse.

The proof is presented in Appendices IV and V.

B. The User Interference Channel With Multiple Antenna
Nodes

Theorem 3 in the preceding section shows that degrees
of freedom are achievable on the three-user interference channel

with antennas and constant channel coefficients. It is not
known if the result can be extended to users. However,
with time-variations it is easy to find the degrees of freedom for
the user interference channel with antennas at each node.
The result follows directly from Theorem 1 and is presented in
the following Corollary.

Corollary 1: The time-varying user interference channel
with antennas at each node has degrees of freedom.

Proof: The converse for Corollary 1 is already derived in
Appendix 1 in (31).

Achievability of Corollary 1 is also straightforward. Suppose
we view each of the colocated antennas at a node as a sep-
arate node. In other words we do not allow joint processing of
signals obtained from the co-located antennas. Then, instead of
a user interference channel with antenna nodes we ob-
tain a user interference channel with single antenna nodes.
But the result of Theorem 1 establishes that degrees of
freedom are achievable on this interference channel. Thus, we
can also achieve degrees of freedom on the user in-
terference channel with antenna nodes.

Last, let us consider the most general user interference
channel where each node is equipped with possibly different
number of antennas. In this case also a lower bound on the de-
grees of freedom is directly established from the result of The-
orem 1. The following Corollary states this result.

Corollary 2: The total degrees of freedom for the user
interference channel where transmitter has antennas and
receiver has antennas is bounded
below as

(29)

Thus, no more than half the degrees of freedom are lost on the
user interference channel with multiple antenna nodes.

Proof: The achievability proof is straightforward as,
once again, the th transmitter receiver pair can be replaced
with single antenna transmitter and receiver
nodes by only allowing distributed processing of signals at
each antenna and discarding the remaining antennas. Thus,
we obtain an interference channel with
transmitters and receivers, each equipped with only a single
antenna. The achievability of degrees
of freedom on this interference channel then follows from the
result of Theorem 1.

Note that Corollary 2 only establishes an innerbound and is
not always tight. For example, consider the two-user interfer-
ence channel where each transmitter has two antennas while
each receiver has only 1 antenna. While Corollary 2 only shows
achievability of degree of freedom for this channel, it is known
that this interference channel has degrees of freedom [27].
However, Corollary 2 is interesting because it shows that inter-
ference cannot reduce the degrees of freedom of the interference
channel by more than half compared to when each transmitter
and receiver is able to operate without interference from other
users.
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Fig. 3. Interference Alignment: Everyone gets half the cake.

VI. CONCLUSION

We have shown that with perfect channel knowledge the
user interference channel has (almost surely) degrees of
freedom when the channel coefficients are time-varying and are
generated from a continuous distribution. The key idea is in-
terference alignment which maximizes the overlap between the
signal spaces of all interference signals at each receiver so that
the size of the interference-free space is maximized for the de-
sired signal. Due to relativity of alignment, it is possible that sig-
nals align at the receivers where they are not desired and remain
distinguishable at the receivers where they are desired. Some-
what surprisingly it is shown that all the interference can be
concentrated roughly into one half of the signal space at each
receiver, leaving the other half available to the desired signal
and free of interference. The alignment can be accomplished
for any number of users but as the number of users increases a
larger signal space is needed for each user to recover nearly half
of it.

While this work shows the potential benefits of interference
alignment, several challenges must be overcome before these
benefits translate into practice. One key issue is the assump-
tion of global channel knowledge. While a node may acquire
channel state information for its own channels, it is much harder
to learn the channels between other pairs of nodes with which
this node is not directly associated. On the other hand, global
channel knowledge may not be necessary if there is a feedback
channel through which the receivers can guide the transmitters
into aligned configurations in real time by applying incremental
corrections. Also iterative algorithms based on channel reci-
procity may be able to align interference in a distributed fashion
[28].

The key insight of this paper is the role of interference align-
ment in a wireless network. From a capacity perspective the
idea of interference alignment reaffirms the need for structured
codes in wireless networks, also pointed out by [29]. For the
single user point to point Gaussian channel it is well known
that the capacity can be achieved through random (Gaussian)
codebooks as well as through structured (lattice) codes. There
is a growing realization that structured codes, optional for the
single user case, may be necessary for approaching the capacity

of networks. In an interference network when we design one
user’s codebook we are also designing the interference/noise
that will be seen by other users. Having structure in the inter-
ference may therefore be necessary. It is the structure imposed
on the transmitted signals that facilitates interference alignment
in this work. The intuition from this work is that since random
codes will not automatically align themselves, structured codes
will be necessary for wireless networks. Indeed interference
alignment at the codeword level has been shown to be optimal
in the capacity sense in [21] and in the degrees of freedom
sense in [22] for some interesting cases. A combination of
Han–Kobayashi [3] type achievable schemes and structured
codes is a promising avenue in the quest for the capacity of
wireless networks.

APPENDIX I
EXAMPLE: INTERFERENCE ALIGNMENT VIA DELAY OFFSETS

Consider the -user interference network shown in Fig, 3,
where there is a propagation delay associated with each channel.
In particular, let us assume that the propagation delay is equal
to one symbol duration for all desired signal paths and two
symbol durations for all paths that carry interference signals.
The channel output at receiver is defined as

(30)

where during the th time slot (symbol duration) transmitter
sends symbol and is i.i.d. zero mean unit vari-
ance Gaussian noise (AWGN). All inputs and outputs are com-
plex. The transmit power at each transmitter is E

. In the absence of interference, each user
would achieve a capacity of . Now, with all
the interferers present, suppose each transmitter transmits only
during odd time slots (with power ) and is silent during the
even time slots. Let us consider what happens at receiver 1. The
symbols sent from its desired transmitter (transmitter 1) are re-
ceived free from interference during the even time slots and all
the undesired (interference) transmissions are received simulta-
neously during the odd time slots. Thus, each user is able to
access the channel one-half of the time with no interference
from other users. Each user achieves a rate
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where the pre-log factor of denotes the degrees of freedom
achieved by each user. The sum-rate is also found
to be the capacity by a converse argument that is nearly identical
to the converse for the phase-alignment example.

APPENDIX II
CONVERSE FOR LEMMA 1

We present the proof for the case that all nodes are equipped
with antennas. In this case the statement of the lemma be-
comes

(31)

We consider the case and eliminate messages
, leaving us with a two-user MIMO in-

terference channel. The following converse holds for both
time-varying and constant channel coefficients. The channel
input-output equations are written equivalently as:

(32)

(33)

With probability one the channel matrices are invertible. So we
can equivalently write

(34)

(35)

where

(36)

(37)

Since the capacity of the interference channel depends only on
the noise marginals, we assume without loss of generality that

(38)

(39)

where

(40)

(41)

(42)

and

is strictly positive with probability . Here refers to
the smallest eigenvalue of matrix . are
mutually independent and jointly Gaussian.

Consider any reliable coding scheme for this interference
channel, spanning channel uses. We use the notation
to indicate the vector of values taken by variable for

. Starting from Fano’s inequality, we have

(43)

(44)

(45)

(46)

(47)

where the last step follows from the known result that the
sum capacity of a multiple access channel with an an-
tenna receiver can only contribute at most degrees of
freedom. Thus, we have . Similarly, for any

we obtain . Finally,
adding up all the outerbounds in (4), we obtain the converse
statement for the degrees of freedom of the user interference
channel with antennas at each node

(48)

APPENDIX III
ACHIEVABILITY FOR THEOREM 1 FOR ARBITRARY

Let . We show that
lies in the degrees of freedom
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region of the user interference channel for any where

This implies that

We provide an achievable scheme to show that
lies in the degrees of freedom region

of an symbol extension of the original
channel which automatically implies the desired result. In the
extended channel, the signal vector at the th user’s receiver
can be expressed as

where is an column vector representing the
symbol extension of the transmitted symbol , i.e.

...

Similarly and represent symbol extensions of the
and , respectively. is a diagonal ma-

trix representing the symbol extension of the channel as
shown in the equation at the bottom of the page. Recall that the
diagonal elements of are drawn independently from a con-
tinuous distribution and are therefore distinct with probability .

In a manner similar to the case, message is
encoded at transmitter 1 into independent streams

along vectors so that
is

where is a column vector and is a
-dimensional matrix. Similarly is

encoded into independent streams by transmitter as

The received signal at the th receiver can then be written as

All receivers decode the desired signal by zero-forcing the
interference vectors. At receiver 1, to obtain interfer-
ence free dimensions corresponding to the desired signal from
an -dimensional received signal vector

, the dimension of the interference should be not more than
. This can be ensured by perfectly aligning the interference

from transmitters as follows:

(49)

At the same time, receiver 2 zero-forces the interference from
. To extract interference-free dimensions from a

-dimensional vector, the dimension of
the interference has to be not more than .

This can be achieved by choosing so that

...

(50)

Notice that the above relations align the interference from
transmitters within the interference from transmitter 1 at re-
ceiver 2. Similarly, to decode at receiver when we
wish to choose so that the following relations are
satisfied.

(51)

We now wish to pick vectors so that (49),
(50), and (51) are satisfied. Since channel matrices have a
full rank of almost surely, (49), (50) and (51) can be equiv-
alently expressed as

At receiver (52)

...
. . .

...
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...
At receiver (53)

...

...

At receiver where

(54)

where

(55)

(56)

(57)

Note that , the identity matrix. We now
choose and so that they satisfy the

relations in (53)–(54) and then use equations in (52) to
determine . Thus, our goal is to find ma-
trices and so that

for all .
Let be the column vector

...

We need to choose column vectors
for . The sets of column vectors of and are chosen to
be equal to the sets and where

For example, if we get . and are chosen
as

To clarify the notation further, consider the case where .
Assuming consists of exactly one element, i.e.,

. The set consists of all column vectors
of the form
where all take values 0, 1. and
can be verified to have and elements, respectively.

are chosen using (52). Clearly, for

Now, for

Thus, the interference alignment conditions (52)–(54) are
satisfied.

Through interference alignment, we have now ensured that
the dimension of the interference is small enough. We now need
to verify that the components of the desired signal are linearly
independent of the components of the interference so that the
signal stream can be completely decoded by zero-forcing the
interference. Consider the received signal vectors at receiver 1.
The desired signal arrives along the vectors .
As enforced by (52), the interference vectors from transmit-
ters are perfectly aligned with the interference from
transmitter 2 and therefore, all interference arrives along the
vectors . In order to prove that there are in-
terference free dimensions it suffices to show that the columns
of the square, -dimensional matrix

(58)

are linearly independent almost surely. Multiplying the above
matrix with and substituting for and

, we get a matrix whose th row has entries of the forms

and

where and and
are drawn independently from a continuous distribu-

tion. The same iterative argument as in Section IV-B can be
used. For instance, expanding the corresponding determinant
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along the first row, the linear independence condition boils down
to one of the following occurring with nonzero probability:

1) being equal to one of the roots of a linear equation;
2) the coefficients of the above mentioned linear equation

being equal to zero.
Thus the iterative argument can be extended here, stripping the
last row and last column at each iteration and the linear inde-
pendence condition can be shown to be equivalent to the linear
independence of a matrix whose rows are of the form

where
. Note that this matrix is a more general version of the Van-

dermonde matrix obtained in Section IV-B. So the argument for
the case does not extend here. However, the iterative pro-
cedure which eliminated the last row and the last column at each
iteration, can be continued. For example, expanding the deter-
minant along the first row, the singularity condition simplifies
to one of the following:

1) being equal to one of the roots of a finite degree poly-
nomial;

2) the coefficients of the above mentioned polynomial being
equal to zero

Since the probability of condition 1 occurring is , condition
2 must occur with nonzero probability. Condition 2 leads to a
polynomial in another random variable and thus the iter-
ative procedure can be continued until the linear independence
condition is shown to be equivalent almost surely to a ma-
trix being equal to . Assuming, without loss of generality, that
we placed the in the first row (this corresponds to the term

), the linear independence condition boils
down to the condition that with nonzero probability—an
obvious contradiction. Thus, the matrix

can be shown to be nonsingular with probability 1.
Similarly, the desired signal can be chosen to be linearly

independent of the interference at all other receivers almost
surely. Thus lies
in the degrees of freedom region of the user interference
channel and therefore, the user interference channel has
degrees of freedom.

APPENDIX IV
PROOF OF THEOREM 3 FOR EVEN

Proof: To prove achievability we first consider the case
when is even. Through an achievable scheme, we show that
there are noninterfering paths between transmitter and
receiver for each resulting in a total of paths
in the network.

Transmitter transmits message for receiver using
independently encoded streams over vectors , i.e.,

The signal received at receiver can be written as

All receivers cancel the interference by zero-forcing and then
decode the desired message. To decode the streams along
the column vectors of from the components of the re-
ceived vector, the dimension of the interference has to be less
than or equal to . The following three interference align-
ment equations ensure that the dimension of the interference is
equal to at all the receivers.

span span (59)

(60)

(61)

where span represents the vector space spanned by
the column vectors of matrix We now wish to choose

so that the above equations are satisfied. Since
have a full rank of almost surely, the

above equations can be equivalently represented as

span span (62)

(63)

(64)

where

Let be the eigenvectors of . Then we set
to be

Then and are found using (62)–(64). Clearly,
satisfy the desired interference alignment

(59)–(61). Now, to decode the message using zero-forcing,
we need the desired signal to be linearly independent of the
interference at the receivers. For example, at receiver 1, we
need the columns of to be linearly independendent
with the columns of almost surely. i.e., we need the
matrix below to be of full rank almost surely

Substituting values for and in the above matrix, and
multiplying by full rank matrix , the linear indepen-
dence condition is equivalent to the condition that the column
vectors of

are linearly independent almost surely, where
.

This is easily seen to be true because is a random (full
rank) linear transformation. To get an intuitive understanding of
the linear independence condition, consider the case of .
Let represent the line along which lies the first eigenvector
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(72)

of the random matrix . The probability of a random
rotation (and scaling) of being collinear with is zero.
Using a similar argument, we can show that matrices

and

have a full rank of almost surely and therefore receivers 2
and 3 can decode the streams of and using zero-
forcing. Thus, a total interference free transmissions per
channel-use are achievable with probability and the proof is
complete.

APPENDIX V
PROOF OF THEOREM 3 FOR ODD

Proof: Consider a two time-slot symbol extension of the
channel, with the same chanel coefficients over the two symbols.
It can be expressed as

where is a vector that represents the two symbol
extension of the transmitted symbol symbol , i.e.

where is an vector representing the vector trans-
mitted at time slot by transmitter . Similarly and
represent the two symbol extensions of the received symbol

and the noise vector respectively at receiver . is
a block diagonal matrix representing the extension
of the channel

We will now show lies in the degrees of freedom
region of this extended channel channel with an achievable
scheme, implying that that a total of degrees of freedom
are achievable over the original channel. Transmitter trans-
mits message for receiver using independently encoded
streams over vectors , i.e.

where is a matrix and is a vector
representing independent streams. The following three in-
terference alignment equations ensure that the dimension of the
interference is equal to at receivers 1, 2, and 3

(65)

(66)

(67)

The above equations imply that

span span (68)

(69)

(70)

where

and and are block-diagonal matrices repre-
senting the symbol extension of and , respectively.
Let be the eigen vectors of . Then, we pick

to be

(71)

As in the even case, and are then determined by
using (68)–(70).

Now, we need the desired signal to be linearly independent
of the interference at all the receivers. At receiver 1, the desired
linear independence condition boils down to

span

where and is the two-symbol di-
agonal extension of . Notice that is an matrix.
The linear independence condition is equivalent to saying that
all the columns of the following matrix are inde-
pendent as shown in (72) at the top of the page. We now argue
that the probability of the columns of the above matrix being
linearly dependent is zero. Let denote the
columns of the above matrix. Suppose the columns are lin-
early dependent, then

Let

Now, there are two possibilities
1) . This implies that either one of the fol-

lowing sets of vectors is linearly dependent. Note that both
sets are can be expressed as the union of

a) A set of eigen vectors of
b) A random transformation of this set.
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An argument along the same lines as the even
case leads to the conclusion that the probability of the
union of the two sets listed above being linearly de-
pendent in a -dimensional space is zero.

2) or . This implies that

span span

span span span

Also,

span span

span span

Note that and are -dimensional spaces. (The
case where their dimensions are less than is handled
in the first part). Also, and are drawn from completely
different set of vectors. Therefore, the union of has a
rank of almost surely. Equivalently, span span
has a dimension of almost surely. Since the set

is drawn from an eigen vector that does
not exist in either or , the probability of the 2-D space
span intersecting with the -dimensional
space is zero. For example, if , let indi-
cate the line formed by the intersection of the two planes

and . The probability
that line lies in the plane formed by .
Thus, the probability that the desired signal lies in the span
of the interference is zero at receiver 1. Similarly, it can
be argued that the desired signal is independent of the in-
terference at receivers 2 and 3 almost surely. Therefore,

is achievable over the two-symbol extended
channel. Thus degrees of freedom are achievable
over the 3 user interference channel with antenna at
each transmitting and receiving node.
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